Math 55 Discussion problems 28 Feb

1. Suppose that for every pair of cities in a country there is a direct one-way road connecting them in one direction or the other. Use mathematical induction to show that there is a city that can be reached from every other city either directly or via exactly one other city.
2. Prove that if $A_{1}, A_{2}, \ldots, A_{n}$ and B are sets, then $\left(A_{1}-B\right) \cap\left(A_{2}-B\right) \cap \cdots \cap\left(A_{n}-B\right)=$ $\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)-B$.
3. Let f_{n} be the nth Fibonacci number. Prove that $f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}$ when n is a positive integer.
4. Give a recursive definition of the functions max and min so that $\max \left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\min \left(a_{1}, a_{2}, \ldots, a_{n}\right)$ are the maximum and minimum of the n numbers $a_{1}, a_{2}, \ldots, a_{n}$, respectively.
5. (a) Give a recursive definition of the function ones (s), which counts the number of ones in a bit string s.
(b) Use structural induction to prove that ones $(s t)=\operatorname{ones}(s)+\operatorname{ones}(t)$.
